Core Mathematics 3 Paper I

1. A balloon is filled with air at a constant rate of $80 \mathrm{~cm}^{3}$ per second.

Assuming that the balloon is spherical as it is filled, find to 3 significant figures the rate at which its radius is increasing at the instant when its radius is 6 cm .
2. Solve the equation

$$
3 \operatorname{cosec} \theta^{\circ}+8 \cos \theta^{\circ}=0
$$

for θ in the interval $0 \leq \theta \leq 180$, giving your answers to 1 decimal place.
3. (a) Given that $y=\ln x$,
(i) find an expression for $\ln \frac{x^{2}}{\mathrm{e}}$ in terms of y,
(ii) show that $\log _{2} x=\frac{y}{\ln 2}$.
(b) Hence, or otherwise, solve the equation

$$
\log _{2} x=4-\ln \frac{x^{2}}{\mathrm{e}},
$$

giving your answer to 2 decimal places.
4.

The diagram shows the curves $y=(x-1)^{2}$ and $y=2-\frac{2}{x}, x>0$.
(i) Verify that the two curves meet at the points where $x=1$ and where $x=2$.

The shaded region bounded by the two curves is rotated completely about the x-axis.
(ii) Find the exact volume of the solid formed.
5.

$$
\mathrm{f}(x)=5+\mathrm{e}^{2 x-3}, \quad x \in \mathbb{R} .
$$

(i) State the range of f .
(ii) Find an expression for $\mathrm{f}^{-1}(x)$ and state its domain.
(iii) Solve the equation $\mathrm{f}(x)=7$.
(iv) Find an equation for the tangent to the curve $y=\mathrm{f}(x)$ at the point where $y=7$.
6. (i) Express $\sqrt{3} \sin \theta+\cos \theta$ in the form $R \sin (\theta+\alpha)$ where $R>0$ and $0<\alpha<\frac{\pi}{2}$.
(ii) State the maximum value of $\sqrt{3} \sin \theta+\cos \theta$ and the smallest positive value of θ for which this maximum value occurs.
(iii) Solve the equation

$$
\sqrt{3} \sin \theta+\cos \theta+\sqrt{3}=0
$$

for θ in the interval $-\pi \leq \theta \leq \pi$, giving your answers in terms of π.
7.

$$
\mathrm{f}(x)=\frac{x^{2}+3}{4 x+1}, \quad x \in \mathbb{R}, \quad x \neq-\frac{1}{4} .
$$

(i) Find and simplify an expression for $\mathrm{f}^{\prime}(x)$.
(ii) Find the set of values of x for which $\mathrm{f}(x)$ is increasing.
(iii) Use Simpson's rule with six strips to find an approximate value for

$$
\begin{equation*}
\int_{0}^{6} \mathrm{f}(x) \mathrm{d} x . \tag{3}
\end{equation*}
$$

8. The functions f and g are defined by

$$
\begin{aligned}
& \mathrm{f}: x \rightarrow|2 x-5|, \quad x \in \mathbb{R}, \\
& \mathrm{~g}: x \rightarrow \ln (x+3), \quad x \in \mathbb{R}, \quad x>-3 .
\end{aligned}
$$

(i) State the range of f .
(ii) Evaluate $\mathrm{fg}(-2)$.
(iii) Solve the equation

$$
\operatorname{fg}(x)=3,
$$

giving your answers in exact form.
(iv) Show that the equation

$$
\begin{equation*}
\mathrm{f}(x)=\mathrm{g}(x) \tag{2}
\end{equation*}
$$

has a root, α, in the interval $[3,4]$.
(v) Use the iterative formula

$$
x_{n+1}=\frac{1}{2}\left[5+\ln \left(x_{n}+3\right)\right],
$$

with $x_{0}=3$, to find x_{1}, x_{2}, x_{3} and x_{4}, giving your answers to 4 significant figures.
(vi) Show that your answer for x_{4} is the value of α correct to 4 significant figures.

